Homework 8 Matrices

1. Given the linear system below :
 \[\begin{align*}
 v + 2w - y + z &= 1 \\
 3y + x - z &= 2 \\
 x + 7y &= 1
 \end{align*} \]

 a. Find the Coefficient Matrix \(A \), the State variable vector \(X \) and the input constant vector \(B \)

 b. What are the sizes of \(A \), \(X \) and \(B \)

 c. Write the system as \(A \times X = B \)

2. Prove:

 a. For each \([n \times n]\) matrix \(A \), \(A^T \times A \) is symmetric

 b. If \(A \) is a symmetric matrix, then so are \(A^2 \) and \(2A^2 - 3A + I \)

3. A complex number \(z_1 = x_1 + jy_1 \) may be rotated by an angle \(\theta \) (measured counterclockwise) in the complex plane by forming the product \(z_2 = z_1 e^{j\theta} \)

 The real and imaginary parts of \(z_2 \) are

 \[\begin{align*}
 \text{Re}(z_2) &= x_2 = \cos(\theta)x_1 - \sin(\theta)y_1 \\
 \text{Im}(z_2) &= y_2 = \sin(\theta)x_1 + \cos(\theta)y_1
 \end{align*} \]

 If the real and imaginary parts of \(z_1 \) and \(z_2 \) are organized into vectors

 \[\begin{pmatrix}
 \text{Re}(z_1) \\
 \text{Im}(z_1)
 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
 \text{Re}(z_2) \\
 \text{Im}(z_2)
 \end{pmatrix} \]

 Find a rotation matrix \(R(\theta) \) and Show that the rotation can be carried out with the matrix-vector multiplication

 \[z_2 = R(\theta) \times z_1 \]

4. Solve circuit 2 and obtain all node voltages and currents in the circuit.
5. Suppose that in circuit 1, the battery was not 5 Volts but variable. By performing an appropriate looping function, plot lamp current as a function of battery voltage and comment on the result. Vary the battery voltage between 0 and 10 volts.

Figure 1: Circuit 1

Figure 2: Circuit 2